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For classes of functions with convergent Fourier series, the problem of estimating
the rate of convergence has always been of interest. The classical theorem of
Dirichlct and Jordan for functions of bounded variation assures the convergence of
their Fourier series, but gives no estimate of the rate of convergence. Such an
estimate was first provided by Bojanic. Here we consider this problem in the case
of functions of two variables that are of bounded variation in the sense of Hardy
and Krause. The Dirichlet-Jordan test was first extended by Hardy from single to
double Fourier series. Now, we provide a quantitative version of it. We prove our
estimate in a greater generality, by introducing thc so-called rectangular oscillation
of a function of two variables over a rectangle. © 1992 Academic Press, Inc.

1. INTRODUCTION: FUNCTIONS OF BOUNDED VARIATION ON THE PLANE

Throughout the section, let J:= [a, bJ and K:= [e, dJ be two fixed
intervals in R. We remind the reader of an appropriate notion of variation
for a complex-valued function defined on J x K. Of the many possible
notions (see [1 J), the one tailored to the present purpose is that due to
Hardy [7J and Krause. (See the discussion in [8, Sect. 254].)

Given two partitions

Si)1: a = X o < Xl < ... < Xm = b and

and a function f: J x K --> C, we form a rectangular grid !!} := Si)1 x Si)2 on
Jx K and set

m-l n-l

Si)(f}:= I II!(xj,Yd-!(Xj+l,Yd-!(xj,Yk+d+!(xj+I'Yk+I)!'
j~O k=O

We define the (total) variation of! on J x K by

var2(f, Jx K):= sup {Si)(f): Si) is a rectangular grid on Jx K} (1.1)

344
0021-9045/92 $5.00
Copyright © 1992 by Academic Press, Inc.
All rights of reproduction in any form reserved.



QUANTITATIVE DIRICHLET-JORDAN TEST 345

and say that f is of bounded variation (in the sense of Hardy and Krause)
if each of the numbers

varz(f, J x K), var 1(f( " e), J), varl(f(a, .), K)

is finite. Here the last two quantities are the ordinary variations of the
single variable functions f(x, e) and f( a, y), respectively. For instance,

var 1(f( " e), 1) := sup{ 9 1(f( " e)): 9-\ is a partition ofJ}, (1.2)

where
m-I

~I(f(·, e)):= L If(xj , e) - I(xj + I' e)l;
]=0

and var 1(f(a, . ), K) is defined analogously.
We denote by B V( J x K) the collection of all functions f: J x K -+ C of

bounded variation. As is known (see [2]), BV(Jx K) is a Banach space
with the norm given by

III fill := I/(a, e)1 + varl(f(·, e), J) + var1(f(a, .), K) + varz(f, Jx K).

A few remarks about the above definition are in order. Let/EBV(JxK).
Then it is easily checked that I is bounded on J x K satisfying

I1III or. := sup{ I/(x, y)l: (x, y) EJx K} ~ 111/111.

Furthermore, for each fixed x E J and y E K, the marginal functions f( " y)

and I(x, . ) are of bounded variation on J and K, respectively, with

var 1(f{-, y), J) ~ 1IIIIII and var I (f(x, . ), K) ~ 111/111·

Thus, we can replace 111·111 by many equivalent Banach space norms.
For example, the term f(a, e) can be replaced by I(x, y) for any (x, y) E

JxK or by Ilfller.' and the term varl(f(·,e),J) by varl(f(·,y),J) or
sup{ var 1(f( " y), J): y E K}, etc.

It is also easily verified that if I is twice continuously differentiable in
both variables, then IE BV(J x K) and

1I1IIII = I/(a, e)1 +rla/~~~ e)1 dx +rla/~:.Y)1 dy

J
.b fd Iay(x, y) I+ c c dx dr·
a ( ,x ,.r

Finally, analogously to the one-dimensional case, it is also true that the
limit

I( x + 0, Y + 0) := lim {/( x + u, Y + v) : u, v -+ 0 and u, l' > 0 }
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exists for all (x, y) E [a, b) x [c, d). Similar statements are true for the limits
l(x-O,y+O),f(x+O,y-O), and/(x-O,y-O), as well. Accordingly, if a
function f: R2 -> C has period 2n in each variable and is of bounded
variation on the two-dimensional torus T 2 := [ -TC, n] x [ -TC, TC], then
each of the four limits I(x ±0, y ±0) exists for all (x, y). Concerning these
properties, we refer the reader to consult with [5-8].

2. DOUBLE FOURIER SERIES AND PRELIMINARY RESULTS

Let I: R 2 -> C be a function, 2TC-periodic in each variable and integrable
over T 2

. We remind the reader that the double Fourier series ofI is defined
by

x x
'\' c ei(/<+ky)
L]k ' (2.1 )

where

1 fn fn ..C]k :=-2 I(u, v)e-ll.!u+kl·ldudv
4TC -n-n

(j, k = .... - 1, 0, 1, ... ). (2.2)

We consider the double sequence of symmetric rectangular partial sums

"
S ('f, v 1.,). '\' '\' (' eil.!X + kl'l

m" ,.', J .= L L ]k
i=-m k=-Il

(m,n=O,I, ... ). (2.3 )

(2.5 )

In this paper, we assume that I is a function of bounded variation on T 2

in the sense of Hardy and Krause. Then the representation

1 ·n j.n
sm,,(f, x, y) - s(f, x, y) = TC 2 j rftxy(u, v) Dm(u) D,,(v) du dv (2.4)

o 0

is an easy consequence of (2.2) and (2.3), where

s(f, x,y):= H/(x+O,y+O)+ l(x-O,y+O)

+ I(x + 0, Y - 0) + fIx - 0, y - O)},

I( x + u, Y + v) + f( x - ll, Y + v) + f( x + u, Y - v)
+ I(x - u, y - v) - 4s(f, x, y) if u, v> 0;

I( x + 0, Y + v) + I( x - 0, y + v) + I( x + 0, Y - v)

rft<,(u,v):= +/(x-0,y-v)-4sCf,x,y) if u=o and v>O; (2.6)

fIx + u, y +0) + I(x-u, Y+O) + f(x+ u, y-O)
+f(X-ll,y-O)-4s(f,x,y) if Il>O and v=O;

o if U= v =0;
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1 m . sin(m+ 1/2)u
Dm(u) := -2 + L cOSJU = 2' /2

I~l smu
(m = 0, 1, ... )

is the well known Dirichlet kernel. In particular, if f is continuous, then

¢n(u, v) =f(x+ u, y + v) + f(x- u, y+ v) + f(x+ u, y- v)

+ f(x- u, y- (1)-4((x, y).

Now, it is not difficult to see that ¢n is always continuous, especially

lim ¢n(u,v)= lim ¢n(u,O)= lim ¢n(O,v)=O. (2.7)
u. z: - + 0 - u - + 0 - t' _ + 0 -

This is the reason that representation (2.4) plays a crucial role in the proofs
of Section 5.

Hardy [7] proved the following extension of the Dirichlet~Jordan test
(see, e.g., [10, p. 57] from single to double Fourier series.

THEOREM 1. Iff is a function of bounded variation on T 2
, 2rr-periodic in

each variable, then its Fourier series (2.1) converges to s(f, x, y) at any point
(x, y).

By convergence we mean the convergence of the symmetric rectangular
partial sums smn(f, x, y) in Pringsheim's sense, i.e., when m and n tend to
00 in (2.3), independently of one another.

Zhizhiashvili [9, p. 223] rediscovered this result with the supplement
that if f is continuous on a rectangle R, then its Fourier series (2.1)
converges to f(x, y) uniformly on any rectangle R I inside R. In addition,
he proved that Theorem 1 remains valid if convergence is replaced by
(C, IX, p)-summability, where IX, P> - I are fixed real numbers.

3. NEW RESULTS

We begin by recalling the definition of (ordinary) oscillation of a
function h: J --+ C over a subinterval J, of J, which reads as
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Now, we introduce the notion of rectangular oscillation of a function
f: J x K --> C over a subrectangle J [ x K 1 of J x K by setting

osc 2ct: J 1 x Kd := sup{ If(u, v) - flu', v) - f(u, v') + flu', v')I:

u, u' E J[; v, v' E K I }.

In the sequel, we will distinguish the subintervals of the nonnegative half
of the one-dimensional torus T:= [ -n, n]:

[
jn (j+ l)nJ

[/In:= m + l' m + 1 (j=o, 1, ...,m;m=0, 1, ... ).

Our first result is a basic estimate of the rate of convergence of the
rectangular partial sums of the Fourier series (2.1).

THEOREM 2. If f is a bounded, measurable function on T2
, 2n-periodic in

each variable, such that the four limits f(x ±0, y ±0) exist at a certain point
(x, y), and the four limit functions f(x ± 0, .) and f(·, y ± 0) exist, then for
any m, n ~°we have

(3.1 )

We remind the reader that s(f, x, y) and rPxy are defined in (2.5) and (2.6),
respectively.

We note that the counterpart of (3.1) for single Fourier series was
proved by Bojanic and Waterman [4].

We will also use the following notations: for functions f: T 2 --> C,
h: T --> C, and °< u, v ~ n we write

V2(f, u, v):= var 2et: [0, u] x [0, v]),

VI(h, u):= var1(h, [0, u])
(3.2)

(cf. definitions (1.1) and (1.2)). Now, our second result, which is a
particular case of Theorem 2, reads as follows.
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THEOREM 3. Under the conditions of Theorem 1, for any m, n ;;::°we
have

ISmn(f, x, y) - s(f, x, Y)I

~4(1 +2In+ I/n
2

) ~ ~ (A. ?:?:)
""'" f- L. V2 'P\T' ,(m + l)(n + 1) } ~ 1 k ~ 1 .. j k

2( 1+ lin) m ( . n)
+ m + 1 I~l VI ¢Jx,(·' 0), 7

2( I + lin) II ( n)+ 1 I VI ¢Jxy(O,.), k- .
n+ k~l

Since the continuity of ¢Jx,.(u, v) at U = v =°implies that

(3.3 )

lim V2(¢Jxv,J,s)= lim VI(¢Jxv(·,O),J)= lim VI(¢Jw(O,·),s)=O
c5,e ---+ +0 - i5 ---+ +0 - e --+ +0 -

(cf. (2.7)), the right-hand side of inequality (3.3) converges to °as m, n tend
to 00. In this way, Theorem 1 is an immediate consequence of Theorem 3.
Therefore, Theorem 3 can be viewed as a quantitative version of the
Dirichlet-Jordan test for double Fourier series.

We note that the counterpart of (3.3) for single Fourier series is due to
Bojanic [3].

4. AUXILIARY RESULTS

LEMMA 1. For any O<x~n and m;;::O we have

IrDm(u) dul ~ ( n).
x m+lx

We give only a hint of the proof as

(4.1 )

then apply a summation by parts to the right-most series.
For the reader's convenience, we state the relevant results for single

Fourier series in the form of Lemmas 2 and 3. To this effect, let h: T --+ C
be a 2n-periodic function such that the two limits

lim h(x±t)=h(x±O)
I~ +0

(4.2)
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exist. We set
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,I. _ {h(X + t) + h(x- t) - h(x +0) - h(x -0)
'l'Jt) - ° if t > 0,

if t = 0.

LEMMA 2. (Bojanic and Waterman [4]). If h is a bounded, measurable,
and 2n-periodic function such that the limits in (4.2) exist at a certain
point x, then for any m ~°we have

(4.3)

Actually, Bojanic and Waterman [4] used a weaker version of (4.1) and
found (4.3) with the factor 1+ 21n instead of I + lin.

LEMMA 3 (Bojanic and Waterman [4]). If h is a function of bounded
variation on [0, n], then

(4.4)

Actually, inequality (4.4) was proved in [4] in a more general setting,
namely for functions of generalized bounded variation.

5. PROOFS

Proof of Theorem 2. We start with representation (2.4) by writing ¢J
instead of ¢J". It is plain that

sm,,(f, x, y) - sU. x, y)

1 ·rr Irr

= 2 j {¢J(u, v) - ¢J(u, 0) - ¢J(O, v)} Dm(u) D,,(v) du dv
n a a

I ·rr

+ 2n L¢J(u, 0) Dm(u) du

=:Am"+Bm+C,,, say. (5.1 )

First, we treat Am". To this effect, we introduce the auxiliary function

g(u, p) := ¢J(u, p) - ¢J(u, 0) - ¢J(O, v). (5.2)
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Clearly, g(u, v) is also continuous and, in addition, for any u, v> 0

g(u, 0) = g(O, v) = g(O, 0) = O.

Besides, we will use the notation

351

8 .=--.l!!-
,m' m+ 1 (j=0, 1, ...,m;m=O, 1, ... ).

Then [p" = [8jm , 8j + l.m].
We decompose the double integral defining Amn as

n 2A m" =f f g(u, v) Dm(u) D,,(v) du dv
10m IOrt

+ i: f f {g(u, v) - g(8j"" v)} Dm(u) Dn(v) du dv
i = 1 IJm IOn

+ i: f f g(8}"" V) Dm(u) Dn(v) du dv
j = 1 ~,m Ian

+ f f f {g(u, V)-g(u,8kn )} Dm(u) DII(v) du dv
k = 1 10m hn

+ f f f g(U, 8kn ) Dm(u) Dn(v) du dv
k = 1 [urn hn

+ i: f f f {g(U, v)-g(8jm , V)-g(U, 8kn )+g(8}m, 8kn )}
;=1 k=l 11m hn

X Dm(u) Dn(v) du dv

+ f f f J {g(8jm,v)-g(8jm,8kn)}Dm(u)Dn(v)dudv
J = 1 k = 1 I,m hn

+ f f J f {g(U,8k,,)-g(8jm,8kll)} Dm(u) DII(v) dudv
; = 1 k = 1 I,m hn

+ f f f f g(8,m, 8kn ) Dm(u) Dn(v) du dv
J=l k=l IJm hn

=:A t +A 2 + .. ·+A9 , say. (5.3)

In the sequel, we frequently use the inequalities

for 0 < u:>:; n. (5.4 )
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By this and (5.2),
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IA" "!{, osc~(¢, lorn x IOn) J f (m +~)(n +~) du dv
[0", [0, 2 2

By definition,

g(u, v) - g( (}jrn, v) = ¢(u, v) - ¢( (}jm, v) - ¢( u, 0) + ¢( (}jrn, 0).

Thus, by (5.4),

Setting

by virtue of Lemma 1, we have

(5.5)

(5.6)

(5.7)

(5.8)

Performing a summation by parts gives

Since, by (5.2),

(5.9)
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by (5.4), (5.8), and (5.9), we conclude that

m 1 ( 1)IA31~i~1 jOSC2(tP,IJ-I.mXIon)Ln n+"2 dv

m-l 1
~ rc L -.-1 OSC2(tP, Ijm x Ian)'

j~O J +

Analogously, we can see that

and

By (5.2), we have

g(u, v) - g(8jm , v) - g(u, 8kn )+g(8jm , 8kn )

= tP( u, v) - tP( 8jm , v) - tP(u, 8kn) + tP( 8jm , 8kn),

and, by (5.4), estimate as

353

(5.10)

(5.11 )

(5.12)

IA61 ~ f I OSC2(tP, Ijm x Ikn )f f 48 rc
2

8
du dv

j ~ I k ~ I 11m hn jm kn

rc 2 m n 1
~"4 L L 'k osc2(tP,!jm X Ikn )

j=! k~1 J
m n 1

~ rc
2
J~l k~1 (j + l)(k + 1) osc2(tP, Ijm XIkn )· (5.13)

Performing a single summation by parts, while using notation (5.7), we
obtain that

A 7 =kt tn t~l (g(8jm , v) - g(8jrn , 8kn ))(Rjm - Rj+ I.m)} Dn(v) dv

=kt tn t~l(g(8jm, v)-g(8jm , 8kn)-g(8j-l.m, v)

+g(8j_l.m,8kn))Rjm}Dn(V)dV. (5.14)

640171:3-9
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Since, by (5.2),

g((}jm, v) - g((}jm, (}kn) - g((}j-I.m, v) +g((}j- I,m' (}kn)

= ,p((}im' v) - ,p((}jm, ()kn) - ,p((}j - I.m' v) + ,p((}j - I,m, (}kn),

from (5.8) and (5.14) it follows that

m ~ 1 7t
IA 71 ~ L L -: osc 2(,p, Ij_"m X hn) f -2(} dv

j = I k~ I } hn kn

7t m n 1
~2 L L kOSC2(,p, Ij_l,mxIkn)

j=1 k~1 }

m-I n 1

~ 7t j~O k~ I (j + l)(k + 1) osc2(,p,Ilm X Ikn ), (5.15)

Similarly, we can find that

Keeping notation (5.7) in mind, we may write

m n

A 9= L L g((}jm, (}kn)(Rjm-Rj+l,m)(Rkn-Rk+l,n),
j~ I k~ I

whence a double summation by parts gives

m n

A 9= L L {g((}jm,(}kn)-g((}j-I.m,(}kn)-g((}jm,(}k-l,n)
i~ I k~ I

+ g((}j-I,m, (}k-I.n)} RjmRkn
m n

= L L {,p((}jm, (}kn)-,p((}j-I.m, (}kn)-,p((}jm, (}k-I,n)
j~ I k~ I

+ ,p((}l-I,m, ()k-I,n)} RjmRkn

(cr. (5.2)). Thus, from (5.8) it follows that

m n 1
IA91~j~1 k~1 jkOSC2(,p, Ij _ 1,m xIk_l.n)

m-In-I 1

=l~O k~o(j+I)(k+l)°sC2(,p,IjmXIkn)' (5.17)
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Combining (5.3), (5.5), (5.6), (5.10)-(5.13), (5.15-(5.17) yields
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In order to estimate Bm and en in (5.1), it is enough to apply Lemma 2,
which gives

( 1) m 1
IBml ~ 1+- L -.-I oscl(<p(', 0), 1,m )

n i~O } +

and

Now, combining (5.1), (5.18 )-(5.20) results in (3.1) to be proved.

Proof of Theorem 3. We fix m and n, and set

(5.19 )

(5.20 )

j k

M jk := L L oSC2(<P,!im X lin)
i~O I~O

(j=o, l,oo.,m;k=O, l,oo.,n). (5.21)

We also define a function M(u, v) on the rectangle [n/(m+ 1), n)x
[n/(n+ 1), n) by

M(u, v) := Mjk

which is I j + I,m X I k + 1.'1 apart from the top segment and the right segment
bordering the rectangle, and for j = 0, 1, 00" m - 1; k = 0, 1, 00" n - L Clearly,

j=k=O,

Mjo-Mj_l. o

if j ~ 1 and k = 0,

MOk-Mo.k-l

if j=O and k~ 1,

M jk - Mj-l,k - Mj,k-l + M j - 1•k - 1

if j, k ~ L

A double summation by parts shows that
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(5.24)

m n 1
Lmn :=L L (. + l)(k + 1) osc2 (¢J, IJm x hn)

,~o k~O J

m - 1 n - I (1 1)( 1 1)
= J~O k~O Mik j+ 1 -j+2 k+ 1- k+2

1 m-l (1 1)
+ n+ 1 J~O Min j+ I-j+2

1 n-I (1 1)
+ m + 1 k~O M mk k + 1 - k + 2

+ M mn (5.22)
(m + l)(n + 1)

We will use very simple properties of the two-dimensional
Riemann-Stieltjes integral. We rely on the facts that M(u, v) takes on
constant values over a finite number of nonoverlapping rectangles with
sides parallel to the coordinate axes and that the functions (- l/u) and
( - 11v) are continuous and nondecreasing for u, v> O. Therefore, the right
hand side of (5.22) can be rewritten as

L = n fn fn M(u V)d(-!)(-!)
mn (m + 1)(n + 1) 81m 81n' U V

+ (m + 1~(n + 1) f:'
m

M(u, 8n,n+ d d( -~)
+ (m + 1~(n + 1) f:'

n
M(8m,m+ I' v) d( -~)

+ M mn (5.23)
(m + l)(n + 1)

First, we consider two arbitrary partitions

81m=ap<ap_l < ... <ao=n and 81n=bq<bq-l < ... <bo=n,

where p and q are positive integers. By (5.23), we obviously have that

1
Lmn ~ (m + l)(n + 1)

{
p-Iq-l (1 1)(1 1)

x n2 L L M(ai , bd --- ---
i~O k~O ai +1 ai bk+ I bk

p-l (1 1)
+n L M(ai ,8n,n+l) ----

i~O a,+ I ai

q-l (1 1) }
+n L M(8m,m+l' bd -b--b +Mmn .

k~O k+l k
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Taking into account definitions (1.1), (1.2), and notations (3.2), (5.21),
we infer in turn that

M(aj , bk ) ~ var2(tP[0, aj ] x [0, bk ]) = V2(tP, aj , bk ),

M(aj , 0n,n + d ~ var2(tP, [0, aJ x [0, n]) = V2(tP, aj , n),

M(Om,m + I' bk ) ~ V2(tP, n, bk ),

M mn ~ V2 (tP, n, n),

Second, we choose p := m, q := n,

and u=O, 1, ...,m;k=O, 1, ...,n).

From (5.24) it follows that

(5.25 )

Third, it remains to apply Lemma 3 in order to obtain the two estimates

(5.26)

and

(5.27 )

Substituting (5.25 )-(5.27) (see the definition of Lmn in (5.22)) into the
right-hand side of (3.1), we conclude (3.3) to be proved.
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